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occurrence of dual epitaxy. The reduction in interfacial 
mismatch introduced by dual epitaxy promotes the 
occurrence of dual epitaxy. In dual epitaxy, the factors 
that impair the quality of interface and epilayer, such as 
interfacial mismatch, interfacial net charge and some 
twins, can be remitted or avoided by adopting suitable 
planes of substrate and epilayer and appropriate surface 
reconstruction. Of course, the achievement of an ideal 
dual epitaxy depends on growth conditions and surface 
reconstruction and therefore on energy in the final 
analysis, which includes surface energy, interfacial 
energy, and kinetic and thermodynamic energies. 

The author sincerely thanks Dr A. Y. Cho and 
Mr S. D. Chen for their suggestions and Mr J. J. Yuan, 
Ms H. Lin, Ms F. Li, Mr J. Li and Mr Y. S. Luo for their 
assistance. 
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Abstract 

The method of analysis of crystal space topology by 
means of Voronoi-Dirichlet tessellation is described. The 
possibilities of using Voronoi-Dirichlet polyhedra in the 
investigation of local and global geometrical/topological 
properties of the crystal lattice in structures of simple and 
complex substances are discussed. Examples of the 
application of the proposed method in crystal-chemical 
analysis are given. 

1. Introduction 

At present, geometrical analysis of crystal structure is 
one of the fundamental methods that are used by crystal 
chemists in solid-state investigation. Within this ap- 
proach, the continuous crystal space is replaced by the 
discrete (pointal) space, and geometrical properties of a 
set of points, symbolizing centres of gravity of maxima 
of electron density or structural units (atoms or atomic 
groups), are analysed. This set, otherwise known as the 
multiregular system (MRS), is a set of N regular systems 
of points (where N is a number of crystallographically 

independent structural units) and a special type of 
Delauney system (Galiulin, 1984). The crystal space is 
usually considered as space R 3 in which the MRS is 
embedded (space M3), or as space M 3 in each point of 
which the function of electronic density p(x, y, z) is 
determined, and positive integer Z i, which is equal to the 
charge of a corresponding atom, is compared with each 
point Pi of the MRS (space p3). 

According to numerous investigations, the geometri- 
cal/topological properties of a MRS are connected with 
the energy characteristics of a crystal. In crystal 
chemistry analysis, however, very little attention is paia 
to topological properties of a MRS and M 3 as a rule. 
Although such terms as 'topology of a coordination 
polyhedron' or 'topology of a complex group' are 
commonly used, they do not usually assume the 
performance of a comprehensive analysis of topological 
properties of the discussed objects. A theoretical 
foundation for the topological part of geometrical 
crystallography has been carded out by a number of 
authors (particularly Galiulin, 1984; Wells, 1977; 
Pearson, 1972; Engel, 1986), but the methods of 
mathematical analysis of M 3 topology features are far 
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from perfect. Further, we shall take into account two 
important crystal-chemical problems which are at present 
mainly being solved empirically: 

(i) The problem of restoration of M 3 connectedness, 
which consists of the detection of domains belonging to 
separate atoms in M 3, the determination of their sizes and 
form, and the fixing of contacts (i.e. chemical bonds) 
among domains. Here, atoms are mainly represented as 
hard spheres and interatomic bonds are restored by 
means of the analysis of interatomic distances. In this 
case, a MRS is explicitly or implicitly represented as a 
three-dimensional unoriented infinite graph. However, 
the model of hard spheres only works well for ionic 
compounds: for structures of coordination compounds, 
the analysis of interatomic distances does not always 
permit chemical bonds to be found clearly. 

(ii) The problem of the qualitative and quantitative 
description of M 3 topological features after connected- 
ness restoration. As a rule, the solution of this problem is 
restricted by giving atomic coordination numbers, types 
of coordination polyhedra and the ways of their connect- 
ing, i.e. local topological characteristics. How can one 
describe M 3 topology as a whole? Only in the case of 
close-packed structures is this problem solved completely. 

The above-mentioned problems must be solved within 
the incipient new part of crystal-chemical science: 
topological crystal chemistry. This paper is the first in 
a series of articles devoted to M 3 topology analysis 
methods and their application in descriptive and 
comparative crystal-chemical analysis. 

One of the main methods of topological crystal 
chemistry is the analysis of Voronoi-Dirichlet tessella- 
tion (VDT) of space M 3 with Voronoi-Dirichlet 
polyhedra (VDPs). It is known that a VDP of the point 
Pi of the MRS in M 3 [H(pi)] is convex, all internal points 
of which are positioned nearer to Pi than to any other 
point pj of the MRS. H(pi) can be considered as an 
intersection of half spaces try containing Pi and as being 
formed by planes Sj, which are perpendicular to 
segments connecting p~ with other points Pi of the 
MRS, and the division ratio of each segment for plane Sj 
is K d - '-pj/Rj = 0.5, where pj and Rj are the distances 
from Pi to Sj and p/, respectively. 

Suppose that K d ~ 0.5 while constructing S i. As a 
result, a polyhedron will be obtained that is similar to 
H(p;) with similarity coefficient r = 2K d. Evidently, it 
will be combinatorially equal to H(p~) and dual to the 
coordination polyhedron of Pi [CP(Pi)]. Henceforth, we 
shall call polyhedra, which are constructed as VDPs but 
with K d ~: 0.5, dual CPs. 

At present, a number of algorithms and computer 
programs of VDP construction are known (Koch, 1972; 
Hsu & Rahman, 1979; Tanaka, 1986; Engel, 1986). They 
are based on the search of the intersection of half spaces 
trj. The above-mentioned algorithms are very difficult 
and therefore the number of points pj considered during 
/-/(pi) construction does not exceed several tens (Tanaka, 

1986). In the computer program DIRICHLET that is 
included in the structure topology program package 
TOPOS (Blatov, Shevchenko & Serezhkin, 1993), we 
used for the first time a very effective algorithm, 'gift 
wrapping' (Preparata & Shamos, 1985), in which the 
search of Sj, forming H(pi) faces, is based on the 
construction of the convex hull for the image points 
p; with coordinates (2xj/R 2, 2yj/R 2, 2zj/R~), where 
(xj, yj, zj) are the coordinates of point pj. According to 
our practice, it is necessary to consider no less than 100 
pj points around Pi within a sphere of a given radius 
to construct a VDP successfully. Recently, we have 
computed more than 250 000 VDPs for MRS points in 
real and model crystal spaces using DIRICHLET. It 
should be noted that DIRICHLET may be used for 
combinatorial comparison of a pair of VDPs by means of 
the search of their edge net graph isomorphism and for 
automatically forming a library of combinatorial topo- 
logical types of polyhedra. 

In the case of complex substances, when the Z i values 
differ from each other, the choice of K d = 0.5 is not well 
founded and this circumstance has been the principal 
cause of the rare application of VDPs in crystal-chemical 
analysis. However, in this case, under some conditions, 
VDPs may be successfully used to investigate geome- 
trical/topological properties of the crystal structure. 

Firstly, it has been physically substantiated that VDP 
can be used for the topology analysis of sublattices 
consisting of single-type atoms Pi" Among these 
sublattices, it will be interesting to explore mainly those 
of complexing atoms in crystal structures of inorganic 
and coordination compounds and sublattices of gravity 
centres of molecules in molecular crystals. It should 
be noted that at the same time VDP approximately 
represents the form of an atomic or group domain of the 
conforming structural unit only in the case of its 
sufficient 'compactness', considered as the absence of 
prolonged 'salients' and 'hollows', which are typical for 
many organic compounds, and 'sphericity', i.e. prox- 
imity of the group volume to the volume of the sphere 
inscribed or described around this group. It should be 
noted that the concept of 'sphericity' will give a 
quantitative expression regarding the characteristic G 3 
that will be introduced in the second part of this paper. 

Secondly, VDPs may be used to analyse M 3 local 
characteristics at points Pi with single-type environment 
pj (at the same time, Z i ~: Zj in general). Then, all 
characteristics of an atomic domain, which are invariant 
for a similarity transformation, will be independent of the 
K d value, which may be set equal to 0.5. 

2. Physical meaning of VDP geometrical 
characteristics 

In this section, we shall discuss how VDP geometrical 
characteristics may be connected with local and global 
geometrical/topological properties of p3. 
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2.1. A number of VDP faces 

The fundamental VDP property, determining the VDP 
employment in crystal chemistry, is the possibility of 
calculating the coordination number of Pi [CN(pi)] using 
the number of /'/(pi) faces during the solving of the 
above-mentioned problem (i). Frank & Kasper (1958) 
suggested applying VDP for CN(Pi ) determination in 
simple substances. In complex substances, the CN(pi) 
search while using VDP is possible under the conditions 
of uniformity of surrounding atoms or similarity of their 
characteristics, e.g. in the case of an oxofluoride 
environment. As an example, a VDP of the U atom in 
UO2B204 (Gasperin, 1987) is displayed in Fig. 1, and in 
Table 1 the computation results for its geometrical 
characteristics, according to DIRICHLEF, are given. It 
should be noted that in the cited paper (Gasperin, 1987) 
the CN of the U atom was taken as six whereas the VDP 
analysis (Fig. 1, Table 1) shows that it is also necessary 
to consider atoms that are at a distance of 2.607 ,A from 
the U atom. It should be taken into account that, when 
the sizes of atoms Pi and pj differ from each other and 
consequently IK d -0.51 > 0, the faces with small area 
may vanish when considering the curvature of VDP 
boundaries. 

CN(pi) analysis in sublattices of single-type complex- 
ing atoms permits the determination of the packing 
features of structural units. Thus, in Blatov, Shevchenko 
& Serezhkin (1994), using data on the crystal structures 
of 4124 coordination compounds of titanium, zirconium, 
hafnium, molybdenum, thorium, uranium and neptun- 
ium, we verified the efficiency of the 12-neighbours rule 
(Belov, 1976), according to which the leading atoms or 
atomic groups of the structure (in the case of complex 
groups) are disposed in M 3 in a way resembling the close 
packing of equal hard spheres. The analysis of CN(Pi) in 
sublattices of complexing atoms, considered as centres 

Table 1. An example of the output from the program 
DIRICHLET 

In columns 'Dist. ' ,  'SAng. ' ,  sj and sj (Brown), the value of  the distance 
(,A) between the central atom and the atom listed, the solid angle (%), 
and the bond strength calculated with formulae (2)-(5) and according to 
the method of  Brown & Altermatt (1985) are given, respectively. 

Compound: UO2B204 
Central atom: U1 0.500 0.259 0.750 
VDP volume = 9.45 ,~3 
CP volume = 18.80/~3 

sj 
x y z Dist. SAng. sy (Brown) 

03 0.411 0.256 0.551 1.758 22.04 2.06 2.36 
03 0.589 0.256 0.949 1.758 22.04 2.06 2.36 
Ol 0.603 0.743 0.756 2.379 10.90 0.41 0.44 
OI 0.397 0.743 0.744 2.379 10.90 0.41 0.44 
OI 0.603 -0.257 0.756 2.494 9.11 0.30 0.32 
Ol 0.397 -0.257 0.744 2.494 9.11 0.30 0.32 
02 0.702 0.183 0.739 2.607 7.95 0.23 0.24 
02 0.298 0.183 0.761 2.607 7.95 0.23 0.24 

Central atom: B1 0.301 
VDP volume = 7.69 ,~3 
CP volume = 21.97 ,~3 

x y 

Ol 0.397 0.257 
02 0.202 0.317 
02 0.298 -0.183 
03 0.411 0.256 
02 0.298 0.817 
03 0.089 -0.244 
03 0.411 -0.256 
03 0.589 -0.256 
03 0.089 0.756 
Ol 0.103 0.243 

0.148 0.251 

si 
z Dist. SAng. sj (Brown) 

0.244 1.323 29.67 ! .12 1.14 
0.239 1.376 28.53 0.95 0.99 
0.261 1.393 27.44 0.88 0.94 
0.551 2.713 8.23 0.04 0.03 
0.261 2.800 1.14 0.01 0.02 

-0.051 3.283 3.66 0.01 0.01 
0.051 3.482 0.27 < 0 . 0 1  <0.01 
0.449 3.489 0.04 <0.01 <0.01 

-0.051 3.814 0.52 <0.01 <0.01 
-0.244 4.403 0.48 <0.01 <0.01 

of corresponding complex groups, demonstrated that 
Belov's rule is performed in no more than 11.5% of 
situations, whereas 56-75% of all groups are surrounded 
in the structure by 14 neighbours. In following papers, 
we intend to examine in detail geometrical interpretation 
of the 14-neighbours rule, which was formulated by 
Shevchenko, Blatov & Serezhkin (1992). 

Fig. 1. The projection of the UO2B204 crystal structure fragment on the 
(001) plane (Gasperin, 1987). The dashed lines indicate the U--O2 
bonds which were not taken into account by Gasperin (1987). The 
VDP of uranium is shown by the thin lines. 

2.2. VDP volume 

When simple substances or sublattices of single-type 
complexing atoms are considered, the VDP volume 
characterizes the size of an atom or a structural group in 
p3. It should be noted that the volume per atom in 
structures of simple substances is commonly calculated 
according to the formula 

v [ r / ( p , ) ]  = V~11/Za,, (1) 

where V~n is the volume of a unit cell and/at  is a general 
number of atoms in the cell (Pearson, 1972). However, 
when N > 1, crystallographically different atoms with 
the same chemical nature can have different sizes. For 
example, in t~-Mn and a-Pu structures, the volumes of 
VDPs of atoms vary within the range of 11.56-13.38 and 
18.93-22.14,A 3, respectively. The VDP volume should 
depend on the type of atom Pi (i.e. on the Z i value), its 
degree of oxidation, electronic configuration and the 
environment (Zj values). 
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Table 2. VDP volume versus degree of oxidation (~) and 
composition of the CP of uranium 

N u m b e r  of  types  
~(U) CP compos i t ion  o f  U a tom V D P  vo lume  (A 3) 

II UO 6 1 14.9 
Ill UO 9 1 12.6 
IV UO 6 7 12 (1) 

UO 8 15 11. I (4) 
UO 9 3 11.1 (3) 
UOlo !0 11.2 (6) 
UOI1 1 11.6 
UOi2 ! 1 11.1 (5) 

V UO 6 5 9.9 (5) 
UO7 6 10.0 (4) 
UO8 1 9.8 
UO 9 1 10.1 

VI UO 6 28 9.2 (3) 
UO 7 209 9. l (2) 
UO 8 I l0 9.3 (2) 
UO0 1 9.7 
UO m 5 9.5 (3) 
UOI2 ! 9.2 

We examined the dependence of V[H(Pi)] on CN(pi) 
using the example of oxygen-containing compounds of 
hexavalent uranium (Serezhkin, Blatov & Shevchenko, 
1995). Although in the considered structures the precise 
value of the uranium atomic domain volume is not the 
same as in the VDP (thus, in general, K d ~ 0.5), the 
comparison of VDP volumes of different U atoms in a 
similar environment (in this example the environment 
consists of O atoms) is correct according to the reasons 
mentioned in the previous section. We demonstrated 
(Serezhkin, Blatov & Shevchenko, 1995) that, for 
reasonable values of K d (within the range 0.2-0.8), the 
volume of conforming dual CPs is practically indepen- 
dent of the CN value• According to recently obtained 
data (Table 2), this conclusion is also correct for U atoms 
with other degrees of oxidation. It should be noted that 
the CP volume increases as the CN value increases• A 
hypothesis that the atomic volume in a crystal is constant 
when degree of oxidation and type of environment are 
given may therefore be proposed• 

2.3• Size of VDP faces 

Since in VDT the polyhedra touch each other with 
whole faces and each face conforms to a contact between 
two atoms in p3, the size of this face can characterize the 
pair atomic interaction in a crystal. The most substan- 
tiated characteristic seems to be the value of the solid 
angle I2j (O'Keefe, 1979), corresponding to face Sj, 
which is numerically equal to the segment flj of the 
sphere which is cut by a pyramid with atom Pi at the top 
and face Sj at the bottom (Fig. 2). Within the proposed 
approach, it is assumed that valence abilities of atom Pi 
are distributed among CN(pi) bonds Pi--Pj proportion- 
ally to the values of solid angles J2, conforming to faces 

• CN(I~) 
S j  of /'/(pi). In this c a s e ,  Zj=l ff~j = 4rrsr and we 
assume that 12j is proportional to a portion of the valence 
electrons of atom pi, which are taking part in the 
formation of bond pi- -pj .  'Bond strength' sj, corre- 

sponding to bond Pi--Pj, can be interpreted as an 
analogue of valence-electron density in space among 
interacting atoms (Ivanenko, Blatov & Serezhkin, 1992a) 
and represented as 

sj = (/I2;, (2) 

Fig. 2. The VDP of atom Pi in a b.c.c, lattice ~j is a segment of the 
sphere with a unit radius, which is cut by the pyramid with atom Pi at 
the top and face Sj at the bottom. 

where 

12~ = KI2j/R 3, (3) 

(i is the degree of oxidation of atom Pi, g2j/R3 is an 
analogue of the solid angle of thejth face describing non- 
sphericity of the domain of atom Pi and possessing the 
dimensionality of electronic density• The coefficient of 
proportionality K is the normalization factor and is 
determined by the formula 

CN(p/) 

K = 1 E t2jl R3. (4) 
j = l  

In the suggested method in accordance with Pauling's 
second rule (Pauling, 1929), the balance of valences on 
atoms Pi, i.e. complexing cations, is assumed, for which 

CN(pi) 

s =  s t (5)  
j = l  

is equal to their degree of oxidation• Balance of valences 
on atoms pj of ligands is calculated as the sum of valence 
contributions of all atoms Pi whose VDPs have common 
faces with those of atoms pj. In contrast to the classical 
one-dimensional approach, when 'bond strength' sj of 
two atoms is determined only by the Rj value (Pyatenko, 
1972; Brown & Wu, 1976; Brown & Altermatt, 1985), 
the proposed method considers the influence of atomic 
crystal environment on intensity of interaction between a 
pair of atoms and permits the examination of not only 
ionic compounds but also coordination and covalent 
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compounds. Also, its advantage is the absence of 
adjusted parameters in estimated formulae (2)-(5). We 
demonstrated (Ivanenko, Blatov & Serezhkin, 1992a) the 
efficiency of this method on the example of oxygen- 
containing coordination compounds of uranium(VI) 
when the calculation of the balance of valences, 
according to traditional methods, gave an abnormally 
large value for the total structural imbalance or required 
the modification of values of fitting parameters (Ivanen- 
ko, Blatov & Serezhkin, 1992b). For example, let us 
consider the balance of valences in the above-mentioned 
crystal structure of UO2B204. Table 1 shows the 
geometric data for VDPs of U and B atoms and the sj 
values for all the contacts U - - O  and B- - O ,  which are 
necessary for the calculation based on formulae (2)--(5). 
The balance of valences (in bond-strength units) on the 
crystallographically independent O1, 02  and 03 atoms is 
1.83 (1.90), 2.06(2.17) and 2.06 (2.36), respectively [the 
values calculated according to the method of Brown & 
Altermatt (1985) are given in parentheses]. It should be 
noted that this method gives satisfactory balance of 
valences on U atoms (6.24) only under the condition of 
ignoring U - - O 2  contacts, and as a result the error in 
determination of the CN of U atoms appears, as 
mentioned above. 

3. VDT application for the evaluation of the degree of 
uniformity of crystal structures 

In the previous sections, the possibilities of the 
application of VDPs for the analysis of local properties 
of M 3 space were considered. Below we shall describe 
the method of the analysis of the M 3 global topological 
property, the uniformity, using characteristics of the 
corresponding VDT. 

It is well known that, under the influence of central 
attractive forces, atoms or more complex structural units 
of a crystal try to arrange themselves so that the number 
of shortest contacts among them will be a maximum [the 
so-called principle of maximum filling of space (Vain- 
shtein, Fridkin & Indenbom, 1983)]. On the other hand, 
in the presence of repulsive forces with the same nature, 
atoms and atomic groups tend to locate at the greatest 
distance possible from each other. Thus, a two dimen- 
sional model (an arrangement of negative charges on a 
sphere), used specifically in Gillespie's theory (Gillespie 
& Hargittai, 1991), leads to the conclusion of uniform 
distribution of like charges on a spherical surface. 

The formation of a three-dimensional structure of the 
crystal is a result of superposition of interatomic 
attractive and repulsive forces. In the approximation of 
central forces by analogy with the two-dimensional 
model, it may be assumed that the most 'uniform' 
arrangement of atoms or structure-forming groups in a 
space should conform to the energy minimum of the 
crystal lattice, and space M 3 should possess the global 
property of uniformity. According to the above, it should 

be noted that the problem of the uniform arrangement 
of points in space R" was considered by Delauney, 
Dolbilin, Ryshkov & Shtogrin (1970) and the value of 
the coefficient of space covering (K¢) by equal crossing 
spheres with centres at points of the considered system 
was proposed as a criterion of uniformity. According to 
Delauney, Dolbilin, Ryshkov & Shtogrin (1970), the 
minimum of K C conforms to the most uniform system of 
points. Among three-dimensional periodic structures, this 
is a body-centred (b.c.) lattice with K C = 1.4635 (Con- 
way & Sloane, 1988). The other uniformity criterion may 
be formulated with the help of the parameters of 
discreteness (Rd, i.e. minimum distance between the 
points of a system) and covering (R~, i.e. maximum 
distance from any point of space to the nearest point of 
the system), which are used in the theory of Delauney's 
systems (Galiulin, 1984). The ratio R~/R d, whose 
minimum value conforms to the most uniform system 
of points, may be applied as a quantity evaluation of 
uniformity. The b.c. lattice also has the minimum value 
of Rc/R d -- 0.646 for a three-dimensional periodic lattice 
(Galiulin, 1984). It should be noted that the above- 
mentioned criteria of uniformity can be applied only to 
the limited set of MRSs, when all points are crystal- 
lographically equivalent (N = 1). When N > 1, it is 
necessary to take into account the difference of forms and 
sizes of atomic domains. 

We suggest the evaluation of the standard deviation of 
a quantizer (Conway & Sloane, 1988), i.e. the lattice laid 
on the continuous space R n, the coordinates of each point 
in R n being rounded to those of the nearest point Pi of the 
lattice, as the quantity criterion of M 3 space uniformity. 
Thus, all points inside/7(Pi) are assumed to be equal to 
pi. The value of the standard deviation of a quantizer is 
measured by the distance between p~ and a point, whose 
coordinates are rounded. For the quantitative expression 
of an error that is introduced by a quantizer, the 
evaluation of the average value of the standard deviation 
is used, which is normalized on the space dimension (n) 
and the VDP volume V[H(Pi)] (Conway & Sloane, 
1988): 

N 

( 1 / N ) ~  f r2i dV[H(pi) ] 
1 i=l H(pi) 

G~ = . (6) 

n {(1/N) ~--~ V[FI(p')I} 

Henceforth, we assume that everywhere the quantizer 
coincides with the MRS. In this case, N is the number of 
base atoms in a unit cell and r i is the distance between the 
F/(pi) point and the corresponding atom Pi. 

In a particular case, when the MRS point coincides 
with the gravity centre of its VDP, G 3 is equal to the 
dimensionless second moment of inertia of a polyhedron 
(Conway & Sloane, 1988). The quantizer, whose points 
are most uniformly arranged relative to the space, has the 
minimum G 3 value. The best known lattice quantizer for 
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R 3 is a b.c. lattice (Conway & Sloane, 1988) with 
G 3 = 0.07854. 

G 3 is an integral parameter, which at the same time 
takes into account a number of M 3 characteristics 
connected with M 3 uniformity. Let us consider some of 
them, using terminology customary to crystal chemists. 

(1) The spread in values of interatomic distances in 
CP(Pi), which are equal to the doubled values of the 
shortest distances between atom Pi and the / - / (p i )  faces. 

87 

g5 

g3 

G3xlO 3 

8 7 -  

8 5 -  

J 
1 t 3 -  

I I 1 I I 
0.9 1.0 1.1 c/a 

(a) 

G3x 10 3 

~__.___JJ 
1 I ,  i I 

0.9 I0  11 c,/(~a} 
(b) 

G3~I0 3 

87 

85 

83 

I I I I I 
-0.04 0.00 0.04 z 

(c) 
Fig. 3. Value of G 3 for (a) a tetragonal prism versus the value of ratio 

c/a, (b) a tetragonal bipyramid versus the value of ratio c/2tna,  and 
(c) for a cube versus the value of shift (z) of  the central atom from the 
cube centre of gravity. 

Table 3. G 3 and Rc/p values for regular polyhedra and a 
sphere 

Polyhedron R c/# G 3 ( x 103 ) 
Tetrahedron 3.000 104.00 
Cube 1.732 83.33 
Octahedron 1.732 82.55 
Dodecahedron 1.258 78.13 
Icosahedron 1.258 77.82 
Sphere 1.000 76.97 

For example, in Fig. 3(a) the function of G 3 of VDP, 
possessing the form of a square prism, versus the ratio of 
the prism height (c) to the length of its base edge (a), is 
given. Fig. 3(a) shows that the minimum value 
G 3 = 0.08333 conforms to the ratio c/a = 1 when the 
VDP of an atom transforms into a cube and all six 
distances in CP(pi) (an octahedron) coincide in value. 
Increasing or decreasing the ratio c/a in comparison with 
the above-mentioned value is followed by tetragonal 
distortion of the octahedron and the corresponding 
appearance of four nearer (4 + 2 coordination) or farther 
(2 + 4  coordination) neighbours in the coordination 
sphere of the atom, the result of which is the increase 
of the G 3 value. 

(2) The spread in values of distances between atoms, 
considered as hard oscillating spheres, and the centres of 
structure holes (i.e. VDP vertices). Let us illustrate the 
influence of this factor, using the example of VDP in the 
form of a tetragonal bipyramid with different values of 
the ratio c/a, conforming to the tetragonal-prismatic 
environment of the central atom. In this case, all 
distances from the central atom to the eight atoms of 
its first coordination sphere are equal for any values of 
c/a, whereas the spread in distances to the centres of the 
holes (i.e. six vertices of the bipyramid) depends on the 
value of c/a. Fig. 3(b) shows that the minimum value 
G 3 = 0.08255 conforms to a VDP in the form of a 
regular octahedron (c/a -- 1.414). 

(3) The value of the ratio Rc/p, where Rc and p are the 
radii of spheres described and inscribed in a VDP, 
respectively, is used to evaluate the degree of polyhedron 
sphericity, since in the limiting case the polyhedron with 
an infinite number of faces, existing at equal distances 
from the central atom, degenerates into a sphere, whose 
Rc/p value is minimum and equal to 1. The correlation of 
the second moment of the VDP and the ratio Rdp is 
visible in a number of Platonic solids (Table 3), whose 
faces and vertices are equivalent to each other, and the 
above-mentioned factors (1) and (2) do not allow the 
differences in uniformity of structures containing poly- 
hedra of this type to be revealed. It should be mentioned 
that the value of Rdp is identical for dual polyhedra 
(Table 3), whereas the G 3 value decreases when the 
number of polyhedron faces increases. The data in Table 
3 also demonstrate the possibility of using the character- 
istic G 3 for the quantity evaluation of the degree of VDP 
sphericity, since a sphere possesses the minimum G 3 

value among all three-dimensional solids. 
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Table 4. G3 values for polymorphous modifications of 
some  meta ls  

Poly- Poly- 
morphous Tempera- morphous Tempera- 

modification ture (K)* G3(x 103) modification ture (K)* G3(x 103) 
a-Ga i" 85.67 a-Pu <394 80.67 
~Ga, ! 10 81.01 O-Pu 394--478 79.09 
a-Mn <980 78.94 y-Pu 478-588 78.90 
~-MnJ~ 298 79.21 6-Pu  5 8 8 - 7 4 1  78.74 
y-Mn 1358-1373 78.74 6'-Pu 7 4 1 - 7 5 4  78.56 
y'-Mn 1373-1410 78.74 e-Pul" >754 78.54 
3-Mnt >1410 78.54 ~-Sn <286 91.15 
ot-Np <551 81.00 /3-Sn~" >286 8 I. 10 
~-Np 55 !-813 79.51 a-U <933 79.43 
y-Npt >813 78.54 fl-U 933-1033  78.83 
a-Po <348 83.33 y-U~ >1033 78.54 
fl-Po~f >348 81.86 a-W ~" 78.54 

fl-W;l: 923 78.54 

* Data from Tonkov (1979). 
~" Phase remains stable up to the melting point. 

Metastable phase. The temperature is given at which the structural 
experiment was performed. 

(4) The value of the central atom shift from the VDP 
centre of gravity. Let us consider a VDP in the cubic 
form, where the central atom is shifted from the centre of 
gravity towards a face by z, the value of which is 
expressed in fractions of the cube edge. The analysis of 
G 3 v e r s u s  z (Fig. 3c) demonstrates that the most uniform 
arrangement around the central atom is realized when 
z = 0, while, when Izl ~ 0.5, the G 3 value increases 
greatly. 

The given examples indicate that G 3 describes the 
features of M 3 uniformity in more detail than any of the 
above-mentioned parameters. Indeed, the criterion, 
demanding the minimum of the ratio of covering (Re) 
to discreteness (Re) parameters for structures with a 
single crystallographic type of atom, is analogous to the 
above-mentioned factor (3) (since R e -- 2p) and there- 
fore it is part of the characteristic G 3. In turn, the criterion 
of R c / R  a minimum includes the condition of K~ 
minimum (and also the condition of packing coefficient 
Kp maximum) since 

RclRa = ½[Rdp] 
~ I  4 (1~ rrR 3/w[ rr(p;)l}/1~ Jrp ~ / v [  n(p,)]}) 1/~ 
= l [Kc/K,]l /3.  (7) 

The described method was used by Blatov, Pol'kin & 
Serezhkin (1994) for the evaluation of the uniformity of 
crystal structures of simple substances under thermal 
phase transitions and also versus  the position of the 
corresponding element in the Periodic Table. Thus, Table 
4 shows that the value of G 3 regularly decreases (and 
consequently the structure uniformity increases) with the 
temperature increase in all known polymorphous 
sequences of metals (including the case of such long 
series as a-Pu . . . . .  e-Pu) with the exception of sequences 
containing modifications that are metastable under the 
condition of the structure experiment (such as /3-Ga, 

/~-Mn and fl-W). Fig. 4 demonstrates the increase of 
uniformity of crystal structures with the growth of the 
atomic number of an element in the principal subgroups 
of the Periodic Table. This fact may be interpreted as a 
result of the increase of metallic properties of elements 
and the corresponding growth of the portion of 
undirected interactions in the whole energy of the crystal 
lattice. The obtained results have permitted the following 
principle of crystal lattice uniformity to be formulated: in 
a thermodynamically stable structure, the atoms and 
atomic groups, among which the non-directional forces 
act, try to arrange themselves in space so that the 
minimum G 3 value will conform to the system of their 
gravity centres. In our opinion, the uniformity principle 
expands the principle of maximum space filling 
(Vainshtein, Fridkin & Indenbom, 1983), resting on the 
same physical foundations. We assume that the principle 
of uniformity should also be performed for polymor- 
phous rows of more complex compounds, but evidently 
in this case striving for uniform arrangement will be 
typical in structural groups, not in individual atoms. 

4. Concluding remarks 

In this paper, we considered several methods of 
topological crystal chemistry. In future publications we 
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110 I 

As Sb Bi 
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G3xI03 

If0 

I00 

80 

%x103 

9o b s i ~ - - ~  
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Fig. 4. Values of G 3 for structures of elements of (a) III, (b) IV, (c) V, 

(d) VI and (e) VII principal subgroups of the Periodic Table. 
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intend to describe other methods of investigation of local 
and global geometrical/topological properties of M 3 and 
a l s o  to  i l lus t ra te  e a c h  o f  the s u g g e s t e d  m e t h o d s  by 
e x a m p l e s  o f  the c r y s t a l - c h e m i c a l  a n a l y s i s  o f  v a r i o u s  

c l a s s e s  o f  s u b s t a n c e s  and  s o m e  m o d e l  s y s t e m s .  
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Abstract 

A description is given of 4-connected nets with one kind 
of vertex in which at least three of the shortest rings 
containing each pair of edges are 4-rings. 21 such nets 
are identified and characterized topologically. Some 
correspond to well known zeolite structures, but most 
are believed to be new. 

Introduction 

This paper continues a description and characterization 
of 4-connected nets with one kind of vertex (uninodal). 
Previous papers described nets without 4-rings or 3-rings 
(O'Keeffe & Brese, 1992) and with 3-rings (O'Keeffe, 
1992). Only nets (realizable nets) that have a conforma- 
tion with four equal edges corresponding to shortest 
distances between vertices are considered. The reader is 
referred to O'Keeffe & Brese (1992) for an account of 
how the nets were discovered, other criteria for inclusion, 

Table 1. Correspondence of the numbering of nets in this 
paper (first column) with earlier names and numbers 

The three-letter code is that of Meier & Olson (1992). 

44 #16 W*8 - O'Keeffe (1991) 
45 #13 D8 - O'Keeffe (1991) 
46 203 Faujasite FAU Smith & Bennett (1981) 
47 202 Zeolite type A LTA Smith & Bennett (1981) 
48 206 Zeolite rho RHO Smith & Bennett (1981) 
49 83 Chabazite CHA Smith (1978) 
50 205 Zeolite ZK5 KFI Smith & Bennett (1981) 
51 82 Gmelinite GME Smith (1978) 
52 23 Gismondine GIS Smith (1978) 
53 17 Merlinoite MER Smith (1978) 
55 46 - - Smith (1978) 
63 49 - - Smith (1978) 

and for definitions of terms such as 'coordination 
sequence' and 'Schlafli symbol' that are used here. That 
paper also indicates why the data presented here are of 
interest and are expected to be reasonably complete. It 
might be noted that other recent enumerations of 4- 
connected nets (e.g. Han & Smith, 1994; Boisen, Gibbs 
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